Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Characterized by similar-to-today CO2 (∼400 ppm) and surface temperatures approximately 3°–4°C warmer than the preindustrial, the mid-Pliocene warm period (mPWP) has often been used as an analog for modern CO2-driven climate change and as a constraint on the equilibrium climate sensitivity (ECS). However, model intercomparison studies suggest that non-CO2boundary conditions—such as changes in ice sheets—contribute substantially to the higher global mean temperatures and strongly shape the pattern of sea surface warming during the mPWP. Here, we employ a set of CESM2 simulations to quantify mPWP effective radiative forcings, study the role of ocean circulation changes in shaping the patterns of sea surface temperatures, and calculate radiative feedbacks during the mPWP. We find that the non-CO2boundary conditions of the mPWP, enhanced by changes in ocean circulation, contributed to larger high-latitude warming and less-stabilizing feedbacks relative to those induced by CO2alone. Accounting for differences in feedbacks between the mPWP and the modern (greenhouse gas–driven) climate provides stronger constraints on the high-end of modern-day ECS. However, a quantification of the forcing of non-CO2boundary condition changes combined with the distinct radiative feedbacks that they induce suggests that Earth system sensitivity may be higher than previously estimated.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Observational constraints imply limited future Atlantic meridional overturning circulation weakeningFree, publicly-accessible full text available June 1, 2026
-
Abstract The role of cloud feedbacks in Arctic amplification (AA) of anthropogenic warming remains unclear. Traditional feedback analysis diagnoses the net cloud feedback as strongly positive in the tropics but either weak or negative in the Arctic, suggesting that AA would be amplified if cloud feedbacks were suppressed. However, in cloud-locking experiments using the slab ocean version of the Energy Exascale Earth System Model (E3SM), we find that suppressing cloud feedbacks results in a substantial decrease in AA under greenhouse gas forcing. We show that the increase in AA from cloud feedbacks arises from two main mechanisms: 1) the additional energy contributed by positive cloud feedbacks in the tropics leads to increased poleward moist atmospheric heat transport (AHT) which then amplifies Arctic warming; and 2) the additional Arctic warming is amplified by positive noncloud feedbacks in the region, together making extrapolar cloud feedbacks amplify AA. We also find that cloud changes can modify the strength of noncloud feedback, but that modification has a small effect on Arctic warming. We further examine the role of cloud feedbacks in AA using a moist energy balance model, which demonstrates that interactions of cloud feedbacks with moist AHT and other positive feedbacks dominate the influence of clouds on the pattern of surface warming. However, the contribution of cloud-induced changes in noncloud feedbacks on AA is relatively minor. These results demonstrate that traditional attributions of AA, that are based on local feedback analysis, overlook key interactions between extrapolar cloud changes, poleward AHT, and noncloud feedbacks in the Arctic.more » « lessFree, publicly-accessible full text available August 15, 2026
-
Abstract Given the key role that atmospheric heat transport plays in Earth's climate system, efforts to document its changes over the satellite era are valuable. Clark et al. (2022,https://doi.org/10.1029/2022GL098822) calculated trends in atmospheric heat transport among four reanalysis data sets and found substantial disagreements between data sets. However, after accounting for the lack of mass‐conservation in reanalysis data sets, we find much smaller magnitude trends, with much better agreement among reanalyses. This highlights the importance of mass corrections when calculating atmospheric heat transport.more » « less
-
Here, we show that the Last Glacial Maximum (LGM) provides a stronger constraint on equilibrium climate sensitivity (ECS), the global warming from increasing greenhouse gases, after accounting for temperature patterns. Feedbacks governing ECS depend on spatial patterns of surface temperature (“pattern effects”); hence, using the LGM to constrain future warming requires quantifying how temperature patterns produce different feedbacks during LGM cooling versus modern-day warming. Combining data assimilation reconstructions with atmospheric models, we show that the climate is more sensitive to LGM forcing because ice sheets amplify extratropical cooling where feedbacks are destabilizing. Accounting for LGM pattern effects yields a median modern-day ECS of 2.4°C, 66% range 1.7° to 3.5°C (1.4° to 5.0°C, 5 to 95%), from LGM evidence alone. Combining the LGM with other lines of evidence, the best estimate becomes 2.9°C, 66% range 2.4° to 3.5°C (2.1° to 4.1°C, 5 to 95%), substantially narrowing uncertainty compared to recent assessments.more » « less
-
Evaporation adds moisture to the atmosphere, while condensation removes it. Condensation also adds thermal energy to the atmosphere, which must be removed from the atmosphere by radiative cooling. As a result of these two processes, there is a net flow of energy driven by surface evaporation adding energy and radiative cooling removing energy from the atmosphere. Here, we calculate the implied heat transport of this process to find the atmospheric heat transport in balance with the surface evaporation. In modern-day Earth-like climates, evaporation varies strongly between the equator and the poles, while the net radiative cooling in the atmosphere is nearly meridionally uniform, and as a consequence, the heat transport governed by evaporation is similar to the total poleward heat transport of the atmosphere. This analysis is free from cancellations between moist and dry static energy transports, which greatly simplifies the interpretation of atmospheric heat transport and its relationship to the diabatic heating and cooling that governs the atmospheric heat transport. We further demonstrate, using a hierarchy of models, that much of the response of atmospheric heat transport to perturbations, including increasing CO 2 concentrations, can be understood from the distribution of evaporation changes. These findings suggest that meridional gradients in surface evaporation govern atmospheric heat transport and its changes.more » « less
-
Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes.more » « less
-
The observed rate of global warming since the 1970s has been proposed as a strong constraint on equilibrium climate sensitivity (ECS) and transient climate response (TCR)—key metrics of the global climate response to greenhouse-gas forcing. Using CMIP5/6 models, we show that the inter-model relationship between warming and these climate sensitivity metrics (the basis for the constraint) arises from a similarity in transient and equilibrium warming patterns within the models, producing an effective climate sensitivity (EffCS) governing recent warming that is comparable to the value of ECS governing long-term warming under CO forcing. However, CMIP5/6 historical simulations do not reproduce observed warming patterns. When driven by observed patterns, even high ECS models produce low EffCS values consistent with the observed global warming rate. The inability of CMIP5/6 models to reproduce observed warming patterns thus results in a bias in the modeled relationship between recent global warming and climate sensitivity. Correcting for this bias means that observed warming is consistent with wide ranges of ECS and TCR extending to higher values than previously recognized. These findings are corroborated by energy balance model simulations and coupled model (CESM1-CAM5) simulations that better replicate observed patterns via tropospheric wind nudging or Antarctic meltwater fluxes. Because CMIP5/6 models fail to simulate observed warming patterns, proposed warming-based constraints on ECS, TCR, and projected global warming are biased low. The results reinforce recent findings that the unique pattern of observed warming has slowed global-mean warming over recent decades and that how the pattern will evolve in the future represents a major source of uncertainty in climate projections.more » « less
-
Abstract Despite substantial global mean warming, surface cooling has occurred in both the tropical eastern Pacific Ocean and the Southern Ocean over the past 40 years, influencing both regional climates and estimates of Earth’s climate sensitivity to rising greenhouse gases. While a tropical influence on the extratropics has been extensively studied in the literature, here we demonstrate that the teleconnection works in the other direction as well, with the southeast Pacific sector of the Southern Ocean exerting a strong influence on the tropical eastern Pacific. Using a slab ocean model, we find that the tropical Pacific sea surface temperature (SST) response to an imposed Southern Ocean surface heat flux forcing is sensitive to the longitudinal location of that forcing, suggesting an atmospheric pathway associated with regional dynamics rather than reflecting a zonal-mean energetic constraint. The transient response shows that an imposed Southern Ocean cooling in the southeast Pacific sector first propagates into the tropics by mean-wind advection. Once tropical Pacific SSTs are perturbed, they then drive remote changes to atmospheric circulation in the extratropics that further enhance both Southern Ocean and tropical cooling. These results suggest a mutually interactive two-way teleconnection between the Southern Ocean and tropical Pacific through atmospheric circulations, and highlight potential impacts on the tropics from the extratropical climate changes over the instrumental record and in the future.more » « less
An official website of the United States government
